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Abstract—Semantic segmentation has been one of the most 

researched topics in the field of computer vision in recent 

years. This study was conducted using U-Net architecture 

in the context of self-driving cars on a cityscape dataset. 

The dataset is an urban scene image that contains all scene 

scenarios in a typical city. It includes 5,000 high-quality 

finely annotated pixel-level images gathered from 50 cities 

over various seasons. The U-Net model uses a pre-trained 

RestNet101 for its encoder for feature extraction and has 

skip connections between the encoder and the decoder 

with RELU activation. The skip connection helps to retain 

spatial information after down sampling, this enables the 

model to combine deep layers and fine-grained features. 

The model achieved 88\% accuracy, 80\% pixel accuracy, 

85\% precision, 84\% recall and 84.49\% F1 score metric. 

The model was trained for 75 epochs of 2 hours and 30 

minutes of training time on the cityscape dataset. The 

model has shown good performance by achieving high 

accuracy and addressing class imbalance with 

augmentation techniques and weighted categorical loss in 

the context of autonomous driving. Theproposed U-Net 

model with RestNet101 encoders achieved high accuracy 

compared to VGG16 and ResNet50 in a typical complex 

scene environment in the cityscape dataset. 
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I. INTRODUCTION 

Semantic segmentation plays an important role in enabling 

autonomous vehicles, such as self-driving cars, to understand 

and navigate their surroundings smoothly and effectively. 

Autonomous vehicles, sometimes referred to as driverless 

vehicles [1], autonomous vehicles [3] – [4], or robotic cars [2], 

are among the most exciting new technologies at the moment 

and a hot topic of study. It is a widely used perception method 

for self-driving cars that associates each pixel of an image 

with a predefined class [16]. Compared to image recognition 

and target location and detection, semantic segmentation not 

only provides object classification information but also 

extracts location information, which lays the foundation 

forother computer vision tasks [17] – [18]. The achievement 

of high accuracy and computational efficiency in semantic 

segmentation is essential for the safe and efficient operation of 

autonomous vehicles. 

 A self-driving car is capable of understanding its environment 

and operating with less human intervention [12]. 

For autonomous driving to be successful, cars must be able to 

collect and process data from their surroundings in real-time 

using cameras and sensors to create a complete picture of 

driving conditions [5]. These cars mainly depend on the 

information collected by their sensors [6]. These cars use a 

variety of advanced sensors, cameras, and computer vision 

algorithms to perceive their environment and make decisions. 

Convolutional neural networks (CNN) and other deep learning 

techniques have recently been used to achieve sophisticated 

results in image segmentation and classification [5]– [9]. 

These networks are made up of layers that can learn the 

information’s understructure from multilevel data. Since the 

characteristics that make up these layers are learned from the 

data and do not require human design, deep learning 

techniques can efficiently extract features on their own, saving 

time and effort [14]. CNNs have shown good results in 

medical analysis, such as the segmentation of brain tumours 

[10], liver tumours [11], and pancreatic tumours [12], as well 

as incomputer-aided diagnostic applications [13] to improve 

body health. 

The U-Net has a symmetric encoder-decoder structure with 

skip connections that combine the corresponding decoder 

layers with high-resolution encoder features. This design helps 

the model retain spatial information, making U-Net 

particularly effective for tasks requiring precise segmentation. 

Initially developed for biomedical image segmentation, U-Net 

has shown good performance in many domains, including self-

driving cars. This paper uses a U-Net structure neural network 

on a Cityscapes dataset with the use of ResNet101 as its 

encoder for feature extraction. 

Achieving high accuracy performance and addressing class the 

imbalance that causes state-of-the-art models, suchas FCN 

[35] and SegNet [36] to ignore important small details has 

long been a challenge. As a result, semantic segmentation 

approaches are biased towards the dominant classes during 

inference [15]. This paper implemented a widely used 

architecture on medical imaging datasets known as U-Net on a 
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cityscape dataset for semantic segmentation in the context of 

autonomous driving. By adopting this architecture to the 

cityscape dataset, we demonstrated that the model has great 

accuracy in semantic segmentation tasks, which are critical for 

autonomous vehicles to understand their surroundings.  

Using a pre-trained ResNet101, which features 101 layers for 

efficient feature extraction within the U-Net model, the study 

delivered good segmentation results, making it particularly 

well-suited for complex scenes. 

 

The key contributions of the paper include the following:  

 The use of a U-Net model in a cityscape dataset to 

improve accuracy and address the class imbalance in 

autonomous driving scenes.  

 The use of ResNet101 as the encoder backbone for better 

feature extraction compared to ResNet50 and VGG16 of 

the state-of-the-art models.  

 The use of a proprietary scaling layer to enable seam less 

up sampling and concatenation improves the model’s 

ability to capture various elements such as trees, vehicles, 

and road signs.  

 The use of weighted categorical loss and data 

augmentation techniques such as flipping, rotation, 

random cropping and Gaussian blur increases the variety 

of representation of the minority classes.  

 

II.RELATED TOPICS 

A. Deep  Learningfor SemanticSegmentation  

The main goal of the U-Net architecture was to address the 

issues of limited data in the medical field. It was designed to 

effectively analyse a smaller amount of data while maintaining 

computational effectiveness. Due to its versatility, it can also 

be used in CamVid and cityscape datasets to perform well. 

Other models such as PSPNet proposed by Hengshuang Zhao 

et al. [25] in the paper titled "Pyramid Scene Parsing 

Network" presented at CVPR 2017 had a remarkable 

performance. The model uses a pre-trained ResNet50 for 

feature extraction. This pre-trained is trained on the ImageNet 

dataset for classification tasks. This model classified a 

segmented object in relation to the contextual information 

available within the surroundings. Other deep learning models 

use encoder-decoder, these types include fully convolutional 

networks (FCN) [5], encoder-decoder-based techniques such 

as Segnet [26], ERFNet [27], and U-Net [28], as well as 

ESPnetv2 [29].  

 

B. Attention And Gating Mechanism  

CNNs have recently improved in various vision tasks, 

including classification [16], detection [17], segmentation 

[18], image captioning [19], and visual recognition [20] using 

attention mechanisms. Attention processes guide the model, 

helping it focus on the most important features and ignoring 

those not relevant to a particular task. To capture long-range 

dependencies, Wang et al. [16] presented a residual attention 

network that uses non-local self-attention processes. Hu et al. 

[21] introduced the squeeze-and-excitation method for 

ILSVRC 2017 image classification with channel-wise 

attention computed to emphasise the valuable channels via 

global average pooling and surpassed the existing methods. 

An interesting work on self-attention was presented by Woo et 

al. [22], wherein they proposed a convolutional block attention 

module (CBAM) that leverages both spatial and channel 

information, allowing for effective feature refinement.  

 

C. Other Variants And Modifications 

The Dilated-UNet model improves medical image 

segmentation by utilizing the advantages of the U-Net 

architecture and the Dilated Transformer blocks [23]. The 

Dilated Trans- former blocks help to portray a bigger 

background without compromising detail.  

Attention U-Net [23] is a version that integrates an attention 

gate to improve feature selection during segmentation, 

increasing sensitivity and prediction accuracy, especially in 

complex image contexts.  

 

D.  Challenges And Existing Problems  

Achieving high-accuracy performance has long been a 

challenge. Specifically, ENet [31]and Fast-SCNN [32] aim to 

address this gap in speed and accuracy with their lightweight 

architectures; a crucial area for robotics, self-driving cars, and 

aerial vehicles, but this issue still exists.  

Another challenge is a class imbalance in semantic 

segmentation training datasets. Certain kinds of items (such as 

roads and automobiles) may dominate the dataset, resulting in 

a model that excels at segmenting common objects but 

struggles with less common categories such as cyclists or 

pedestrians (particularly in rural regions). This lack of 

robustness can undermine the reliability and safety of 

autonomous vehicles [30]. This bias might cause significant 

performance disparities when facing unusual circumstances on 

the road, jeopardizing autonomous vehicle safety and 

operational dependability.  

To address these challenges, we proposed a U-Net model with 

ResNet101 encoder, which has 101 layers suitable for 

featureextraction, thus achieving high accuracy and addressing 

the issue of class imbalance on the Cityscape dataset. We also 

used augmentation techniques including flipping, rotation, 

scaling, and random cropping to increase the variety and 

representation of minority classes so that the model becomes 

robust to such class variations. 

We further used a categorical cross-entropy loss function for 

multi-class problems. The loss function treated each class as 

mutually exclusive, allowing the model to optimize 

predictions over majority and minority classes alike without 

any explicit weighting.  
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III. METHODOLOGY 

A. Dataset 

The Cityscape dataset is an urban scene dataset that contains 

all scene scenarios in a typical city. It includes 5,000 high-

quality finely annotated pixel-level images gathered from 50 

cities taken over various seasons. For training, validation and 

testing, the images are separated into sets with the numbers 

2,975, 500, and 1,525. Identifies 19 categories or classes that 

include both things and junk [14]. In addition, two comparison 

settings are given, training with only fine data or training with 

both fine and coarse data, 20,000 coarsely annotated images 

[25]. The dataset supported our experimental goal.  

The dataset supported the experiment goal by dealing with 

various issues in semantic segmentation, like the accuracy of 

understanding an entire scene and scene context, which are 

important for advancing research into self-driving cars as well 

as urban scene understanding. The dataset offers high-quality 

images that are meticulously annotated with pixel-precise 

labels. Detailed annotations allow for precise evaluation of 

models’ performance. There are various scenarios, including 

lighting conditions, weather, times of day, and scenes 

containing multiple objects. This allows models to generalize 

well and understand more in varied conditions, thus, driving 

cars can work well. It includes a variety of urban scenes with a 

range of object kinds and occlusions.  

 

B.  Data Preprocessing  

Download and Resize: First, the dataset is downloaded and 

uploaded on the Kaggle cloud environment for storage and 

processing. The images are then resized to 200x256 pixels and 

stored in their respective directories of test, validation and 

training.  

 

Normalization and Dataset creation: The images are then 

normalized between the range of [0,1] by dividing by 255.0 

into three channels known as the RGB color standardization. 

respective directories of test, validation and training.  

 
 

C. Data augmentation 

1) Random Horizontal and Vertical Flip 

The images are then flip horizontally and vertically with a 

probability of 50%.  

 
 

III. EXPERIMENT AND RESULT 

The test set for this evaluation experiment watermark ima 

2) Random Rotation 

The images are rotated by a random angle, within a specified 

range rotation by -10 and 10 degrees for each pixel location 

(x,y)(x,y) is transformed. 

 
 

3) Gaussian Blur 

Blurs the image using a Gaussian kernel, it is in smoothing out 

noise and small details. The Gaussian kernel of size k×k and 

standard deviation σ 

 
 

D. Model Architecture 

U-Net is a popular image segmentation model developed 

primarily for biomedical imaging. It has been popular for its 

power encoder and decoder with skip connection which helps 

to retain useful spatial information during downsampling. The 

term U-Net described its U-shaped architecture of the network 

architecture [24].  

In our model architecture, the encoder uses ResNet101 of five 

convolutional layers. ResNet101 is used for the feature 

extraction as the encoder, it contains 101 layers of trained 

imageNet dataset for classification tasks. The encoder in our 

U-Net model as shown in Fig1, extracts increasingly abstract 

characteristics at various spatial scales by gradually 

downsampling the input image; each of these convolutional 

layers is followed by a Rectified Linear Unit (ReLU) 

activation function. To restore spatial resolution, the decoder 

subsequently up samples these features with the help of skip 

connections. The decoder then used UpSampling2D layers to 

up sample the feature maps back to the original of the input 

size. The feature maps from the encoder, which is the 

ResNet101 are resized and concatenated with the upsampled 

maps in a manner similar to U-Net. 

The encoder starts with a 7 x 7 convolutional layer on the 

input image with stride 2,capturing low-level features from the 

input image and reducing its spatial dimension. Then a 3x3 

max pooling layer with stride 2 is applied, further reducing the 

size of the feature map. The ResNet blocks in this architecture 

are divided into four stages with multiple residualblocks 

within each stage. In these stages, the feature maps 

progressively downsample, spatial resolution reducing and 

channel depth increasing by; Stage 1 —64 channels, Stage2 —

256 channels, Stage 3 —512 channels, Stage 4 —1024 

channels and Stage 5 - 2048channels as shown in Figure 4-1. 
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The decoder mirrors the encoder, and progressively 

upsampling feature maps back to the spatial resolution of the 

input image 

 

Fig1: U-Net With 101 Encoder 

 

E. Loss Function 

The weighted categorical cross-entropy loss is a commonly 

used loss function in multi-class classificationtasks, 

particularly in scenarios where class imbalance exists. It 

quantifies the differencebetween the true class labels and the 

predicted probabilities produced by the models,with an 

emphasis on penalizing incorrect classifications more heavily 

for underrepresented classes. The main objective 

duringtraining is to minimize this loss, encouragingthe model 

to produce predicted probabilities that are as close as possible 

to the true classdistribution while giving higher importance to 

misclassifications of minority classes. 

 

The weighted categorical cross-entropy loss can be defined as: 

 

 

F. Experimental Parameter Setting 

Table:1 Experimental Parameter Setting 
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IV. RESULTS AND DISCUSSION 

The model has shown some notable results of 88% model 

accuracy, 80% of pixel accuracy, 84% of recall accuracy, 

precision of 85% and F1 score of 84.49%. This has shown that 

ResNet101 can be used for feature extraction as an encoder. 

Fig 9 shows the original, masked, and output of the predicted 

image on the cityscape dataset. Thus, we address the class 

imbalance and achieve high accuracy. Table2 shows very 

good and consistent performance across 19 classes in the 

cityscape dataset. Our model excelled in precisely identifying 

numerous common as well as uncommon classes. The "Road" 

class, in particular, got a remarkable Class Accuracy of 98.2%. 

This level of accuracy signifies that the model is able to 

correctly identify a dominant class while still solving for class 

imbalance.  

The model has also performed much better in under-

represented classes. For example: The class Accuracy of 

"Fence" was 89.0%, and for "Bicycle" it reached 93.7%. This 

is a marked improvement over the state-of-the-art models and 

our model fully resolves complicated issues with different 

object types.  

Apart from Class Accuracy, other important metrics like Pixel 

Accuracy and F1 Score showed regular performance too. All 

previously underperforming classes exhibited higher  

 

 
Fig2. Model Accuracy Curve 

 
Fig3: Model LossCurve 

 

Table 2shows very good and consistent performance across 19 

classes in the cityscape dataset. Our model excelled in 

precisely identifying numerous common as well as uncommon 

classes. The "Road" class, in particular, got a remarkable Class 

Accuracy of 98.2%. This level of accuracy signifies that the 

model is able to correctly identify a dominant class while still 

solving for class imbalance.  

The model has also performed much better in under-

represented classes. For example: The class Accuracy of 

"Fence" was 89.0%, and for "Bicycle" it reached 93.7%. This 

is a marked improvement over the state-of-the-art models and 

our model fully resolves complicated issues with different 

object types.  

Apart from Class Accuracy, other important metrics like Pixel 

Accuracy and F1 Score showed regular performance too. All 

previously underperforming classes exhibited higher values 

for these metrics. The model effectively handles common and 

rare classes by balancing precision with recall; this helps to 

reduce segmentation errors steadily and correctly by 

identifying all object types.  

 

 

 

 

 

 

 

 



International Journal of Engineering Applied Sciences and Technology, 2025 
Vol. 9, Issue 09, ISSN No. 2455-2143, Pages 24-34 

Published Online January 2025 in IJEAST (http://www.ijeast.com) 
 

29 

Table 2: Per Class Performance on Cityscape Dataset 

 

A. EVALUATION METRIC 

1) Pixel Accuracy  

A common Pixel evaluation metric is used to further assess 

the model. Its calculates the percentage of the correctly 

identified pixels across all given classes, providing a simple 

but effective method for evaluating the overall performance 

of the model. Our model obtained 80% Pixel Accuracy. The 

equation for Pixel Accuracy is given by:  

 

 
Where; 

 

 

 
Fig4: Pixel Evaluation Metric Curve 

 

2) Precision  

Precision is the percentage of real positive pixels among all 

pixels labelled as positive by the model. It is an 

essentialmetric, particularly in circumstances where false 

positives might have serious consequences, such as in 

medical diagnostic applications and autonomous systems 

[33]. A high precision score indicates that a model reliably 

identifies the relevant pixels, minimizing instances of 

falsely labelling background pixels as part of the target class 

[34]. Our model obtained 85% precision.  
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3) Recall  

We further used the Recall evaluation metric to further 

assess our model by measuring the percentage of real 

positive samples that the model accurately detected. Thus, 

our model achieved 84% recall accuracy.  

 

 

 
Fig5 : Precision Evaluation Metric 

 
Fig6: Recall Evaluation Metric 

 

 

 

3) F1 Score 

We further analysed with F_1 score which is a harmonic 

mean of precision and recall, providing a balanced 

evaluation metric for our proposed model, where there are 

imbalance class distributions. We obtained an 84.49% F1 

Score  

 

 

 
Fig7 : F1 Score Evaluation Metric 

 

B. COMPARISON OF EVALUATION METRICS FOR 

U-NET WITH DIFFERENT BACKBONES 

Table 3and Fig shows how U-Net performs using different 

backbones —VGG16, ResNet50 and ResNet101—on 

important benchmark metrics (Pixel Accuracy, 

Precision,Recall and F1 Score).U-Net + VGG16: Pixel 

accuracy reached 71%, precision stood at 75.2%, recall at 

78.9% and F1 score was 77.0%. This setup works, but 

deeper networks capture more complex features.U-Net + 

ResNet50: An increase in performance was observed, with 

pixel accuracy of 75%; precision, of 80.4%; recall, of 

82.6%; and F1 score, of 81.5.% 

ResNet50 backbone's enhanced feature extraction and 

segmentation.U-Net + ResNet101: Scored highest amongst 

all models with a pixel accuracy of 80%, precision of 85%, 

recall of 84% and F1 score is 84.49%. The ResNet101 

model has a deeper backbone that allows for more accurate 

segmentation, which is optimal in high-performance tasks. 
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In terms of performance, it's evident that making the 

backbone deeper enhances U-Net’s feature capture ability 

— essential for precise semantic segmentation. The use of 

ResNet50 as a backbone significantly improves upon 

VGG16, indicating that residual connections help to extract 

features better and capture more details in the data. Yet the 

significant performance boost from ResNet50 to ResNet101 

is worth mentioning particularly since the deeper ResNet101 

backbone surpassed both in all major metrics. This likely 

shows that its depth enables it to extract more complex 

features and improve generalization of the model in a 

complex environment. For applications such as urban scene 

segmentation where details are important, the accuracy, 

precision and recall gains of ResNet101 become highly 

important. So, ResNet50 does bring significant 

enhancement over VGG16 but ResNet101 can capture much 

more complexity with depth and has better trade-offs 

between —accuracy versus computational— segmentation 

making it the preferable choice for high-performance. 

 

Table 3: Comparison of Evaluation Metrics for U-Net with Different Backbones (%) 

 
 

 
Fig8: Comparison Of Evaluation Metrics For U-Net With Different Backbones 
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Fig 9:Proposed U-Net Model Results on the Cityscape Dataset 

 

V.CONCLUSION 

The proposed model successfully extracts detailed and con-

textually important information from images in a complex 

scene of the Cityscape dataset by utilizing the pre-trained 

ResNet101 architecture as an encoder. We obtained 88% 

accuracy, 85% precision, 80% pixel accuracy, 84% recall and 

84.49% F1 score. The model trained over 75 epochs for 2 

hours 30 minutes on the cityscape dataset.  

Metrics indicate that our method reduced class imbalance and 

delivered an accurate, consistent performance for all classes. 

Classes with more frequency, i.e., "Road" and "Sky" obtained 

F1 scores of 92% and 97% respectively; whereas difficult, 

minority classes— "Fence" and "Truck" also performed 

comparatively well with F1 scores of 82% and 90% 

respectively. 

The study findings provide validation that data augmentation 

and categorical loss functions help to handle class im-balance, 

allowing the model for reliable performance over a Using a 

pre-trained ResNet101 encoder within the U-Net framework 

also notably improved performance on the Cityscape dataset. 

The data when U-Net with VGG16 backbone, ResNet50 

backbone and ResNet101 backbone was compared showed 

utilise of pre-trained encoders. For example, The pre-trained 

ResNet101 encoder enabled higher accuracy and F1 score than 

both U-Net + VGG16, and U-Net + ResNet50. Since 

ResNet101 has deeper layers with residual connections it can 

capture more fine-grained features of complex urban scenes in 

the Cityscape dataset. The U-Net + VGG16 was less effective 

because of its relative shallowness; whereas the U-Net + 

ResNet50, though deeper than VGG16 still performed worse 

than ResNet101. Pre-trained weights in ResNet101 helped the 

model to generalize well; boosting performance on both 

frequent classes ("Road" and "Sky") as well as difficult, 

minority classes ("Fence" and "Truck"). It proves that pre-

trained encoders like ResNet101 not only help in improving 

segmentation accuracy but also save time and resources during 

training, making it a suitable candidate for high-performance 

segmentation on complex datasets such as Cityscape. 
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